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]  ABSTRACT 3
\\\j ,'-'
In this paper 2 survey is made of some of the recent results in <
stochastic shop scheduling. The models dealt with include: E
’ (1) Open shoos. 3
(ii)  Flow shops with infinite intermediate storage (permutation K
£low shops). ' ' g
. (111) Flow shcps with zero intermediate storage and blocking. ' * E

(iv)  Job shtopns. :
Two objective Iunctions are considered: Minimization of the ex-— N
pected co-pletion time of the last job, the so-called makespan
2ad minizmization of the sum of the expected completion times of
21l jobs, the so-called flow time. The decision-maker is not
allowed to preeapt. The shop models with two machines and expo-
nantially distributed processing times usually turn out to have
: a very nice structure. Shop models with more than two machines
are considarably harder. _ i

[
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1. INTRODUCTION AND SUMMARY

In this paper an attempt is made to survey the recent results in
stochastic shop scheduling. Four shop models are considered; a .
short description of these follows. i
(i) Open Shops. We have n jobs and m machines. A job re-
quires an execution on each machine. The oxder in which a job
passes through the machines is immaterial.

(ii) FPlow Shops with Infinite Intermediate Storage. We have n
jobs and m machines. The order of processing oan the different
machines is the same for all jobs; also the sequence in which the

O )



jobs go through the first machine has to be the same as the se-
quence in which the jobs go through any subsequent machine, i.e.
one job may not pass another while waiting for a machine. A
flow shop with these restrictions is often referred to as a
permutation flow shop.

(iii) Flow Shops with Zero Intermediate Storage and Blocking.
This shop model is similar to the previous one. The only dif-
ference is that now there is no storage space in between two
successive machines. This may cause the following to happen:
Job j after finishing its processing on machine i cannot leave
machine i when the preceding job (job j-~1) still is being pro-
cessed on the next machine (machine i+l); this prevents job j+l1
from starting its processing on machine i. This phenomenon is

called blocking.

(iv) Job S7ops. We have n jobs and m machines. Each job has
its own machide order specified. : ’

Throughout this paper will be assumed that the decision-
maker is not 21llowed to preempt, i.e. interrupt the processing
of a job on a machine. For results where the decision-maker s
allowed to preesmpt, the reader should consult the references.

In this paper two objectives will be considered, namely (i) min-
imization cf the expected completion time of the last job (the
so-called maksspan) and (ii) minimization of the sum of the ex-
pected co=pl=cion tines of all jobs (the so-called flow time).

This sucvey is organized as follows: In Section 2 we
give a short Zascription of the most important results in dzier-
miristic sho:r scheduling (without proofs). The purpose of this
section is to> enable the reader to compare the results for the

t
stochastic vzrsions of the different models, presented in Sec-
ticn 3, with their deterministic counterparts. ¥For the stochas—

tic codels iz Section 3 we will not présent any rigorous proofs
either. Howaver, we will provide for each model heuristic argu-
ments that =2y make the results seem more intuitive. In Section
4 we discuss the similarities and differences between the deter—
ministiz'and the stochastic results.

The notation used in thislpaper is the one developed by
Graham et al (5). For example, Pj; represents the processing

time of job j on machine i. When this processing time is a ran=

dom variable it will be denoted by p... A second example: OZI
i

Pij - exp(l)lE(Cnax) represents a two machine open shop where

the processing times of each job on the two machines are random

vaciables, exponentially distributed with rate one and where the

objective 'to be minimized is the expected makespan (E(Chax)).
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2. DETERMINISTIC SHOP MODELS
This section consists of three subsections: In the first sub-
section we deal with open shops, in the second one with flow

shops and in the last one with job shops.

2.1 Deterministic Open Shops

Consider the two machine case where the makespan has to be mini-
mized. In (5) this problem is referred to as Ozl[Cmax. Gonzalez
and Sahni (4) developed an algorithm that finds an optimal se-
quence in O(n) time. We present here a much simpler method that
appears to be new.

Theorem 2.1.1. Let Phk = max(p;;, 1=1,2, j=1,...,n). The fol-
lowing schedule minimizes the ma espan- If h=2(1), job k has to
be started zt t=0 on machine 1(2); after finishing this proces—
sing on machine 1(2) job k's processing on machine 2(1) has -to
be postponed as long as possible. All other jobs way be pro-
cessed in an arbitrary way on machinés 1 and 2. Job k may only
be started on machine 2(1) either when no other job remains to be
- processed on zachine 2(1) or when only one other job needs pro-

cessing on =achine 2(1) but this job is just then being processed
on machine 1(2).

)
"

zZar should have little dlfflculty in proviag this
cnzalez and Sahni (4) showed that the open shop prob-
zz Zhan two rmachines is NP-complete.

theoren. ¢
len wizth =2

2.2. Tezer=izistic Flow Shops

irst the two machine flow shop with infinite intermed-
:z2 >etween the machines. We are interested in minimi-
zing the makespan. ' This problem is usually referred to as

FZiiC:ay. Johnson (7) developed the well-known rule for obtain- .

ing tha optizal sequence in this problem.

Treorzm 2.2.1. The sequence, that puts the jobs with Pij S P2j
first, in order of nondecreasing P1j and puts the renalnlng Jogs
afterwards, .in order of nonxncrea51ng P2j> is optimal.

When there are more than two machines in series, the prob-
lem is NP-coaplete (see Gary et al (3)). Research in this area
is still going on, focussing mainly on enumerative methods. One
special case, however, is easy: Consider the case where the
processing times of job i, i=1,...,n at all m machines is pj.

In practice such a situation would occur in-a communication
channel where messages do not change in length when they pass
from one station to the next. For this special case Avi-Itzhak
(1) established the following theorem.
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Theorem 2.2.2. Vhen p .=p. .=...=p
. . 13 ¥2j
is optimal.

for j=1,...,n any sequence

mj’

Reddi and Ramamoorthy (14) considered the flow shop with
zero internediate storage and blocking. This problem is not
covered in the survey paper of Graham et al (5). We will refer
to this flow shop problem as FlblockanICmax. Reddi and Rama-
moorthy (14) found that F2|block1nglcmax can be forrulated as a
Travelling Sazlesman Problem with a spec1a1 structure, a struc--
ture that enables one to use an O(n ) algorithm.

2.3. Deterxzinistic JOB Shdgg

Consider th2z two machine case lelcmax In this two machine
model one sat of jobs has to be processed first on machine 1 and
after that on machine 2. This set of jobs will be referred to
2s set A. A s=cond set of jobs has to be processed first on
nachine 2 a2ad after that on machine 1. This set of jobs will be
referred to a2s set B. Jackson (6), using Johason's algorithm

.for ;2]|C «» for obtaining the optimal schedule in Jz lcmax'

Treorzm 2.3.Z. The following schedule is optimal:- A1l the jobs
of set A (B)
of set B (&}

re to be processed on machine 1 (2) before any job
s to be processed on machine 1 (2). The jobs of
tc be processed on machine 1 (2) in the following

a2

< P2j (PZj < pl-) first .in order of

23 and the remaining jobs afterwards in
r2asing p13 (DZJ)- The order in which the jobs
r2 processed on machine 2 (1) does not affect the

Job shors with more than two machines are NP-complete, even
when 211 prc: ing times are equal to one. But a considerable
2nount of effort has been dedicated to the research in enumera-

tive methois {see McMahon and Florian (8)).

3. STOCHASTIC SHOP MODELS

This sz2ction consists of four subsections: In the first subsec-
tion we dezl with stochastic open shops. In the second one with

stochastic flow shops with infinite intermediate storage between

the machines. In the third one we consider stochastic flow
shops with zero intermediate storage and blocking. 1In the last
subsection stochastic job shops are considered.

3.1. Stochastic Open Shops

In this subsection we assume that there are two machines avail-~
able to process n jobs. Each job has to undergo operations on
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both machines, the order in vhich this happens being immaterial.
Every time a machine finishes an operation the decision-maker
has to decide which job will be processed next on the machine
just freed. A policy prescribes the decision-maker which ac-
tions to take at the various decision moments; such an action at
a decision moment depends on the state of the system at that
coxent. Observe that a policy only has to instruct the
decision-maker what to do as long as there are still jobs which
have not yet undergong processing on either machine. This is
true for the following reason: When machine 1 (2) becomes free,
the decision-rmaker otherwise only can choose from jobs which
have to be processed only on machine 1 (2) and the sequence in
which these jobs will be processed on machine 1 (2) does not
affect the makespan. Clearly

n
c 2 max ( Z P

n
max Yjo1 13 jgl E’zj) .

When one rachine is kept idle for some time in between the opera-
tions of two jobs, the makespan may be strictly larger than the
R.H.S8. of the zbove expression. We may distinguish between two
types of idle pariods, see Figure 1. '

job j
L I NN

! .
,. TN

1 job j

Idle period
of type 1

ow B w e

T T T 111

job j
- R.\\.\\\\\\\\‘; L J1a1e pertoa

. of type II
T T T 1, SO
1 job j

Figure 1
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finished all its jobs. Now
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In an idle period of type II, a machine is kept idle for some
time, say J;, then processes its last job, say job j, and fin-
ishes processing job j while the other machine is still busy
processing other jobs. It is clear that, although a machine has
been kept idle for some time, Cpax = max [ Ipyji, szj]. In an
idle period of type I, a machine is kept idle for Some time, say
J), then processes the last job, say job j, and finishes proces-
sing this job some time, say J;, after the other machine has

n n
Cmax = max (jzl P1; ,jzl sz) + min (Jl’JZ)

It can be verified easily that only one job can cause an idle
period and an idle period has to be either of type I or type II.

‘As the first ternm on the R.H.S. of the above expression does 7ot

depend on the policy, it suffices to find a policy that mini-
nizes E(ain (J1,J2)).

We will ccnsider now a special case of the two machine open
shop model, nzzely the model Oglglg - exp(uj)IE(Cmax), where the
3 i

Hon

operations of job j on the two machines are independent and ex-
ponentizlly distributed, both with rate Bj- From the explanation
above it appears intuitive that, in order to minimize the proba-
bility that an idle period of type I ocecurs, jobs that have not
received zny processing at all should have higher priority than
the jobs thzt zlready have received processing on the other

&

processizg &= » those with smaller expected processing times
should be prcocassed more towards the end. 1Inm fact, for_Ozl

Pij - exp(ugkgi(Cmax) the following theorem has been shown in
Pinedo and Zzss {(13).

K

roc
© zlr
machine. Morzover among the jobs that have not yet received any
= 211
2

N

T7zorem &.1.2. The policy that minimizes the expected makespan
is the policy which, whenever any one of the two machines is
freed, instructs the decision-maker:

(i) Whea there are still jobs which have not yet received pro-
cessing on either machine, to start among these jobs the one
with the largest expected processing time and

(ii) when 211 jobs have been processed at least once to start
any one of the jobs still to be processed on the machine just
freed. ‘ -

Consider now the model Ozlgij ~ GilE(Cmax). In this model
we have n identical jobs and two machines. These two machines
have differeant speeds. The distribution of the processing time
of 2 job on rmachine i, i=1,2, is Gj. We assume that G;, i=1,2,
is New Better than Used (NBU), i.e.

Gy (x+y) /G5 (x) < Gi(y) x20,yz20.

o

.‘ L
2 I et S

L



Under this assumption the following theorem can be proven (see
Pinedo and Ross (13)):

Tneoram 3.1.2. The makespan is stochastically minimized if the
decision-maker starts, whenever a machine is freed, when possi-
ble with a job which has not yet been processed on either
machine.

The proof of this theorem is a proof by induction, on which we
shall not elaborate here. However, the special case Ozlp-- -
exp(1) |[E(Chax) can be analyzed further. For this model the fol-
loving closed form expression for E(Cp,,) under the optimal pol-
icy can be obtained:

2n-1 k 9% - Ui
= —-1\/1 1
k=n

This expression is obtained by calculating the probability of
each job causing an idle period of type I.

Up to now the only objective sader conzideration has been
mininizatisn ¢f expected makespan. Our second objective is min-
injzation cf zxpected flow time, i.e. E(XC;). Consider the
model 02Ip - exp(pl)lE(ZC ): Again we have n identical jobs
on two ﬁachlra: with d1fferent speeds. For the case where the
processing tiz=zz on pachine i, i=1,2, are exponentially distri-
buted with rate ki, we have the following theorem (see Pinedo

(9):

b

Theoram 3.1.3. The flow time is stochastically minimized if the
decision-zmzher starts, whenever a machine is freed, when possible
with 2 job that already has been processed on the other machine.

in this subsaciion we consider m machines and n jobs. The n jobs
are to be processed on the m machines with the order of proces-
sing on the different machines being the same for all jobs. Each
job has to be processed first on machine 1, after that on machine
2, etc. At t=0 the jobs have to be set up in a sequence, in
which they have to traverse the system. We want to deternine the
job sequence that minimizes either E(Cnax) or E(ZCj).

We will consider first the case m=2. In Figure 2 is depic-
ted a realization of the process. Intuitively we may expect that
in order to minimize the expected makespan, jobs with shorter
expected processing times on machine 1 and larger expected pro-
cessing times on machine 2 should be scheduled more towaxrds the
beginning of the sequence, while jobs with larger expected pro-
cessing tines on machine 1 and shorter expected processing times

.
"
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machine 1 A/ B NN

| 1

waiting room NS
+
.machine 2 W///////// [ T T NN

Figure 2

on machine 2 should be scheduled more towards the end of the
' sequence. In the deterministic version of this problem the
.optimal sequence is determined by Johnson's rule. Bagga (2)
considered ‘2!213 -~ exp(u, J)lE(Cmax) i.e. the case where the
processing times are exponentially distributed, and proved,
through an a2djzcent palrw1se switch arguneﬁt the following
theorem.

3 Thzorem 3.2.1. Sequencing the jobs in decreasing order of
M1j — H2j nininizes the expected makespan.

This theorez iIxplies that when the processing time of job j on
pachine 1 (2} is zero, i.e. hyj=° (u2 =) it has to go first
(last). 1If there is 2 numbar of jobs with zero processing times
on nachine 1, these jobs have to precede all the others in the
seguznce. Thz sequence in which these jobs go through machine 2
da2s not zZZzct the makespan. A similar remark can be made if
there is mors than one job with zero processing time on

machine 2.

One special case of the flow shop model is of particular
importance, namely the case where the processing times of a job
on the dlfferent machines are independent draws from the same
distribution, i.e. Plp1 - G4|E(C,y) and Flpss ~ Gy lx-:(zc_]) of
this case one can ea511y flna examples in real llfe. Consider a
communication channel, where messages do not lose their identity
‘ when they pass from one station to the next. From Theorem 3.2.1
follows that for the model F2|pjj - exp(uj) |E(Cpyx) any sequence
will be optimal. Weber (15) cdnsidered F Pij - exp(uJ)IE(CmAK)

l the case for an arbitrary number of machines. With regard to
this model he showed the following theorem.

Tneorem 3.2.2. The distribution of the makespan does not depend
l ' on the sequence in which the jobs traverse the system.
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In Theorea 2.2.2 was stated that in the case where the G:,
j=1,...,n, are deterministic, not necessarily identical, the
makespan does not depend on the job sequence either. This pro-
perty which holds for the exponential and deterministic distri-
butions does not hold for arbitrary distributions. One can
easily find counterexamples. In (10) Pinedo considered other
examples of F|pj; - G-IE(C ). Before discussing the results "
presented in (103 we heed ?33 definitions:

Dzfinttion 1. A sequence of jobs J1s325-+-53y is a SEPT-LEPT
sequence if there exists a k such that
Elp.. < Elp.. < ... S E(p..

(bs5,) = Eley; ) (o5 k)
and ]

E(p.. ) 2E(p,.. ) 2 ... 2 E(p..
(os5,) = 2oy, ) (5 )

(observe thz: 5oth the SEPT and the LEPT sequences are SEPT-LEPT
sequences.)

Definition 2. Distribution Gk and Gz are said to be nonoverlap-
pingly ordsral if P(Pik 2 PiZT is either zero or one. This im-

plies that thz probability density functions do not overlap.

ns we can present the following theo-

3 1E(Caax) -
-~ e T 5T - P ) . .
ingorzT <.z, 1. For m jobs with nonoverlapping processing time
distributisns, any SEPT-LEPT sequence minimizes the expected
makespan.

Note that heoren does 70t state that SEPT-LEPT sequences

tais ¢
are the onlr seguences that minimize E(Cpax). However it is
important to observe that E(Cpyy) dozs depend on the sequence
and that thesres are sequences which do not minimize E(Cmax)- The
next theorez, also concerning Flpij -~ G-IE(Cmax),gives us some
ideaz of how the variance in the processing time distributions
affect the job sequences that minimize E(Cq,,)-
Theoram 3.2.<. Let n-2 jobs have deterministic processing

times, not nacessarily identical, and let 2 jobs have nondeter-
ministic processing time distributions. Then, any sequence that
schedules either one of the stochastic jobs first in the sequence
and the other one last minimizes the makespan stochastically.

Based on Theorems 3.2.3 and 3.2.4 and some computational
results the following rule of thumb for FIEij ~ Gle(Cmax) wvas
stated in (10): Schedule jobs with smaller expected processing
times and larzer variances in the processing times more towards
the beginning and towards the end of the sequence and schedule
jobs with larger expected processing times and smaller variances
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more towards the middle of the sequence. This implies that the
optimal sequences have a unimodal form, both as a function of
the expectations of the processing time distributions and zs a
function of the variances of the processing time distributions.
Because of this form these optimal sequences may also be referred
to as 'bowl'-sequences.

Observe that for the problem F[pll - GJIE(ZC ) when the
processing tine distributions of the”jobs are nonoverlapplno the
SEPT sequence is the only optimal sequeace.

Instead of different jobs on identical machines we will
consider now the case of identical jobs on different machines,
i.e. the prccassing times of .the jobs on a machine are indepen-
dent draws fro= the same distribution. The objective now is to
find the optizal machine sequence (the machine sequence that
minimizes thz sxpected makespan) instead of job seauence. This
model, which zlso can be viewed as a tandem queueing iiodel where
n customers zre waiting at time t=0, will be referred to as
an -~ G;; _..)- It can be shown easily that interchanging
2 i30s, i.e. transforming Flle ~ G |ECCqax) into
Fl?i= -~ G t), results in a problem with exactly the same
strulture’ or Flpl - GiE (Cpax) Theorens 3.2.3 and 3.2.4,
after replacing the worés JObS for "machines", also hold. One
should cbhservs now that the optimal machine sequences stated in
s not only minimize E(C

[N

: max) but minimize E(C3) for
all j=1,... . So these machine sequences also nininize E%LC )
for ?i;,; - 7. '2(ZC;) with nonoverlapping processing time dl'—
riburida: Si?f was the cnly job sequence that minimized E(ZCJ)).

Th= model in this subsection is rather different fronm the rmodel
in the pre

ceding subsection as now there is no intermediate
storagze spzc2 between the machinmes. This may have the following
consaguances: When job j has finished its processing on machine
i but canaot e further processed because job j-1 is still being
processed on machine i+l, job j will be held on machine i. How-

ever, as long as machine i is holding job j, job j+l may not
start its processing on machine i, i.e. job j+1 may not leave
wachine i-l1. This phenomenon is called blocking. Then nmodels
will therefore be referred to as F|blocking glE (Cax) and F|block-
ing|E(ZCy).

Again, we consider first the case m=2. It is clear that
whenever a job starts on machine 1, the preceding job starts
on machine 2. Let the total time during [0,Chayx] that only one
machine functions be denoted by I, which is equivalent to the
total time during [0,Cpax] that one machine is not busy




processing 2 job. A machine is idle when either a machine is
empty or when a job in the first machine is being blocked by a
job in the second. During the time period that job j occupies
machine 1, there will be some time that only one machine is pro-
cessing a job: In case Pyj machine 1 will keep on pro-
cessing job j the moment Job i 1eaves machine 2. Vhen Pii <
P2j-1 nachine 2 will still be processing job j-1 after job j has
finished on wmachine 1. Minimizing E(Cmay) is equivalent to min-
mizing E(I) which is equivalent to maximizing the total expected
time that both machines are busy processing jobs. Based on this
analysis the following result was shown in (10).

Theorem 3.3.2. Minimizing E(Cpzs) in F2]blocking lE(Cma‘) is
equivalent to marimizing the total distance in the following
determinisiic Travelling Salesman Problem. Consider a travelling
salesman who starts out from city O and has to visit cities
1,2,...,n aud return to city 0, while maximizing the total dis-
tance travalla2, where the distance between cities k and £ is

defined as fsllows:
%o T O
dog = 0
dp, = E[min(glk, p,.))- k{0, %#0.

- —hzat when the processing times on the two machines
::::;_y dlS ributed the distance matrix of the TSP has

Consilzz =ow the model r2|b1ock1ng, Pij - G 'E(cmax) where
the procassiz:z times of a2 job on the different machlnes are in-
depandent craws from the same distribution. .We will say that
Gj iz stochastically larger than Gk, G3 >gt Gp, when P(p;:>t) >
Pipik>:) Ser 21l t. Again, by m1n1m121ng E(I) the following
theore= can be shown, see (10)

Theorcm 2.2.2Z. When G >gp Gz Zgp ... st Gn and n is even job
sequeances =,n-2,n-4,...,4,2,1,3,5,...,0-3,n-1 and n-1,n-3,...,
5,3,1,2,4,...,n~4,n-2 n nininize E(Cpyx). When n is odd job
sequences ,n-2 n—4,...,3,1,2,4,...,n—3,n—l 2nd n-1,n-3,...,
4,2,1,3,5,...,n-4,0-2,n nininize E(Cgy,) -

Note that the sequences stated in this theorem are SEPT-LEPT
sequences and therefore "bowl'-sequences. This theorem gives us
some indication of how the optimal job sequeace is influenced by
the expected processing times.

Now we will discuss the influence of the variance in the
processing times given that the expected values of the processing
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times of all jobs are equal, say p. Consider the following spe-
cial case: Let the probability density functions of the proces-
sing times be symmetric around the mean . This implies that
the random variables have an upper bound 2p. We will say that
the processing time of job j is more variable than the proces-
sing time of job k, Gj >y Gy, when Gj(t) 2 G (t) for 0 st < p and
(because of syometry) Gj(t) < Gi(t) Tor w < t < 2p. Distribu-
tions which satisfy these syrmetry .conditions are:

(i)  The Normal Distribution, truncated at 0 and at 2p

(ii) The Uniform Distribution. :

The probability density functions of these distributions are
depicted in Figure 3. ‘
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Figure 3

Theorzm 3.3.3. Vhen G, G, G, C, ... C, Cn and when n is even
job sequences n,n-2,n-4,...,4,2,1,3.5,...,0-3,n-1 and n-1,n-3,
e00,5,3,1,2,4,. .. ,0-4,n-2,n ninimize E(Cp,,). When n is odd
job sequences n,n-2,n-4,...,3,1,2,4, ..., n-3,n~-1 and n-1,n-3,...,
4,2,1,3,...,n-4,0-2,n nininize E(Cp,,).
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So from Theorems 3.3.2 and 3.3.3 we observe that here too "bowl"-
sequences are optimal and therefore the rule of thumb stated in
subsection 3.2 would be valid here, too.

In (10) Pinedo also considered F|blocking, Pij ~ GCj ’E(Cmar)
For this problem a theorem very much like Theorem 3. 2 3 could be
proven.

Theorem 3.3.<. For n jobs with nonoverlapping processing time
distributions a job sequence minimizes E(Cmax) if and only <if it
is SEPT-LEPT. :

So this theorsna, too, emphasizes the importance of "boul"-
sequences. In (10) the author was unable to present a theorem
20T

sinilar to Th em 3.2.4. However, the following conjecture was
stated.

Conjecturz. 12t n-2 jobs have identical deterministic proces-—
sing times, szy with unit processing times and let two jobs have
nondeter:inls:;c processing times with symmetric probability
density fuzziZons and meen one. Then, any sequence which sche-
dules either one of the stochastic Jobs first and the other one
last minizizes E(Cp,,).
zhat for F|blocking, Pij ~ GJlE(XC ), when the pro-
the jobs are nonoverlappingly 31str1bated the
the cnly optimal sequence.

==
n
%)

U) rh [0

: now again the case of n identical jobs and m dif-

nt machinzs. This izplies that the processing times of the
jobs on the J{iIferent machines are independent draws from the
saze distTite Again, we would like to know the optimal

order im wkich to set up the machines in order to minimize
E(Cpay). T2is model will be referred to as I"lblock:m.g,gl_J - Gi!
E(CLayv). In subsection 3.2 it was mentioned that, im the case of

infjnite intsrmediate storage, interchanging jobs and machines
results in 2 —sdel with exactly the same. structure. With block-
ing, howzvar, interchaaging machines and jobs does change the
structurz of the model significantly. In (11) Pinedo showed the
following result with regard to F|blocking, Pij - GilE(Cmax).

Theorem 3.3.5. The expected makespan of n jobs in a system
with m-2 identical deterministic machines with unit processing
times and 2 nonidentical stochastic machines, both'with nean one
and symmatric demsity functiors, is minimized if one of the sto-
chastic machires is set up at the beginning of the sequence and
the other at the end of the sequence.

This theoren appears to be the perfect dual of the conjecture
stated before. The next theorem, however, will illustrate the
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difference between F|blocking
Pij - GilE(Cray).

Theorem 3.3.6. The expected makespan of n jobs in a systea with
m-2 identical nachines with distributions G, and two identical
wachines with distribution G,, where G, is nonoverlappingly lar-
ger than G,, is minimized, when one of the two slow machines is
set up at the beginning of the sequence and the other one at the
end of the sequence.

- cj|£(c

nax) and Fiblocking,

’pl_]

This theorem is quite different from Theorem 3.3.4. Based on
these last two theorems, some other minor results and extensive
simulation work, it appeared that the optimal machine sequences
are not "bowl'-sequences but so-called "sawtooth'-sequences.
These may be described as follows: Suppose we have n-1 identi-
cal machines with distributions G, and m identical machines with
distribution G, (for a total of 2m-1 machines), where G, is non-
overlappingiy larger than G,, then we conjecture that the optimal
machine sequence puts a slow machine at the beginning of the
sequence, follcwed by a fast machine in the second place, a slow
machlne in th2 third place, etc. This sequence has the shape of
a "sawtooth"”. Suppose now we have m-1 identical deternministic
machines with unit processing times and m identical nachines with
mean one and symoetric density function, then we conjecture that
the optical szaguence puts a stochastic machlne at the beginning

of the seguencz, followed by a2 deterministic machine in the
second zlzcz, = stochastic machine in the third place, etc.
This saguenzz, too, has the shape of a "sawtooth'.

3.4. Stochzsziz Job Shops

Very little w2rk has been done on stochastic job shops. The
nain reason is that these models are even harder than the sto-
chastic ficw shops with infinite interwmediate storage between
rachines; these flow shops are just very special cases of job
shooa. The 011y result known up to now concerns lepi- ~ exp
(ulJ) E(C;,4} - In this two machine model one set cf”jobs has to
be proczsszd first on machine 1 and after that on wmachine 2.
This set of jobs will be referred to as set A. A second seit of
jobs has to be processed first on machine 2 and after that on .
rachine 1. This set of jobs will be referred to as set B. In
(12) Pinedo showed that Bagga's Theorem for Fz D exp (ulJ)l
E(Cpax) can be generalized into a theorem for Jsz - e\p(u )
E(Cpay) - However, for lepl - exp(uy )I (Cn ) welcannot spea&
anymore of an optimal sequence we have to speak of an optimal
policy which instructs the decision-maker in any state what
action to take. :

Theorem 3.4.1. The optimal policy instructs the decision-maker,
whenever machine 1 (2) is freed, to start processing of the
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remaining jobs of set A (B) that did not yet undergo processing
on machine 1 (2) the one with the highest value of u 5 - o5
(”2j‘“1j)' If no jobs of set A (B) remain that did not yet
undergo processing on machine 1 (2), the decision-maker nay

start any one of the jobs of set B (A) that already have finished
their processing on machine 2 (1).

4. CONCLUSIOXS

It is clear that the stochastic shop scheduling problems are not
all that easy. The two machine models with exponential proces-
sing times a2re in general tractable, just like the two machine
models with cdaterministic processing times. For the determinis-
tic versions of lelcmax and lelcmax the algorithms are

O0(n log n); for the versions of F2}|E(Cy,,) and JzIIE(Cmax) with
exponentizl processing times the algorithms are also O(n log n).
For the dszer—inistic version of 02]|Cp,x the algorithm is O(n).
The version of OZIIE(Cmax) with exponentially distributed proces-
sing tizes Is hzarder. For tha special case Ozlgij -~ exp(uj)]
E(Cp,ay) the algorithm is already O(n log n). We have not yet
been able to determine the coxmplexity of the more general case
OZIEij - exp(;ij)lE(Cmax). Models with three machines or wmore
appsatr te b= vaTy hard. Only results of a qualitative nature
were obtainzd {e.g. "bowl"-sequences, "sawtooth'-sequences).

. 2o=plexity when we go from two machines to three
<m2n the processing times are deterministic; non-
scheduling with three or more machines are con-
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CORRECTIONS

variables, exponentially distributed with rate one and where the
shop model,.namely the model 02{p ; - exp(uj)|E(Cnay), where_the_
shop model, namely the model 02|p1j - exp(uj)lE(Cmax), vhere the
exp(l)lE(Cnax) can be analyzed further. For this model the fol—
lowing clcsed form expression for E(Cp,y) under the optimal pol-

Up to now the only objective under consideration has been
ninimization cf expected makespan. Our second objective is min-—

icy can ba obiained:

distribution, i.e. Flps; - G5|E(Cmax) and Flpij ~ GjlECZci). of

Because of this form these optimal sequences may also be referred
dpo = O

dop = O
shop model, nzzely the model Ozlglj ~ exp(uj)’E(Cmax), vhere the

Trzorzm 2.£.I. The optimal policy instructs the decision-maker,
whenever cachinz 1 (2) is freed, to start processing of the

When Gy S G? Sy -+ S, Gnp and when n is even - .

line 22 for lelczax’ obtained an optimal schedule for lelcmax°

12 line %3 Theorem 3.3.3. When G) S, G &, ... £, G, and vhen n is even

10 line 2% machine i-l1. This phenomenon is called blocking. These models
16 line 1/ in preparation.

16 line ! Georgia Institute of Technology, Technical Report.-







